Funding our research is a challenge: it requires time and dedication but it is a great opportunity to learn and to mature and most of the time it is really stimulating. Being part of a European project consortium is a way to meet other scientist, to meet companies and to have an ideal window of research fields and worlds different than your one, which often appear in such contests so limited. Being able to design and write a successful proposal requires many skills and each of us can find its personal, unique way to succeed. In my talk, I would like share with you how getting funding worked out for me, from my difficult beginning when I was tempted to give up applying till my latest achievements. It is my personal experience of course but I hope that it might seed in some of you the desire to apply for European grants, exploiting the many different funding schemes at your disposal. Applying for grants requires commitment, perseverance and the ability to accept failures looking forward to the next submission, being positive that it will be the right one and when this will happen, everything will come into place.

Full Professor in Materials Science and Technology, Applied Science and Technology
Department, Politecnico di Torino

Prof. Chiara Vitale-Brovarone, Full Professor in Materials Science and Technology, Politecnico di Torino where she leads the IRIS group (Improving Regeneration by Intelligent Scaffolds). Scopus: 160 papers including research articles and book chapters, H-index 37, ~ 4000 citations.
She has coordinated the EU projects (FP6 – BIORESS, FP7 - MATCH and H2020 - MOZART) and she has been Team leader for the FP7 project RESTORATION. At present, she is coordinating the H2020 project GIOTTO that aims to develop innovative devices to treat osteoporotic fractures and she is the PI of the ERC consolidator grant BOOST.
Her research interests are mainly related to the development of innovative biomaterials ranging from the macro to the nanoscale (3D-scaffolds, micro and nanoparticles, injectable cement and smart surfaces with osteoprotective, antibacterial and biomolecule release properties).
She is developing novel approaches to target bone and wound healing and osteoporotic fractures as well as the fabrication of smart bone scaffolds through rapid prototyping approaches including bioextrusion, ink-jet printing and electrospinning.